代数簇发表评论(0)编辑词条
代数簇是代数几何里最基本的研究对象。 通俗的讲代数簇就是有若干多元多项式方程定义的公共零点集。如果代数簇恰好可以用一个方程定义,就称为超曲面。
最简单的代数簇,就是
d次平面代数曲线: 由方程 f(x,y,z)=0定义, 此处f(x,y,z)是齐次的三元d次多项式。
d=1,2 的曲线同构与射影直线;
d=3 就是椭圆曲线,其标准定义方程为:z*y^2=x*(x-z)*(x-λ*z),此处λ是参数。
d=4就是亏格3曲线。
更一般的,我们有光滑曲线的亏格公式:g=(d-1)(d-2)/2,此处g是曲线亏格。
与“数学,几何,公式”相关的词条
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>