抛物线发表评论(0)编辑词条
抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹。他有许多表示方法,比如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
1.定义
平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.
以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
2.抛物线的标准方程
右开口抛物线:y^2=2px
左开口抛物线:y^2=—2px
上开口抛物线:x^2=2py
下开口抛物线:x^2=—2py
p为焦准距(p>0)
抛物线的标准方程有四个:
(开口向右);
(开口向左);
(开口向上);
(开口向下);
在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x=—p/2; 在抛物线y^2=—2px 中,焦点是(—p/2,0),准线l的方程是x=p/2; 在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y=—p/2; 在抛物线x^2=—2py中,焦点是(0,—p/2),准线l的方程是y=p/2;
抛物线
3.抛物线相关参数(对于向右开口的抛物线)
离心率:e=1
焦点:(p/2,0)
准线方程l:x=-p/2
顶点:(0,0)
通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P
定义域(X≥0)
值域(Y∈R)
4.它的解析式求法:
以焦点在X轴上为例
知道P(x0,y0)
令所求为y^2=2px
则有y0^2=2px0
∴2p=y0^2/x0
∴抛物线为y^2=(y0^2/x0)x
5.抛物线的光学性质:
经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴。
6.抛物线的一段的面积和弧长公式
面积 Area=2ab/3
弧长 Arc length ABC
=√(b^2+16a^2 )/2+b^2/8a ln((4a+√(b^2+16a^2 ))/b)
7.其他
抛物线:y = ax^2 + bx + c (a≠0)
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x-h)^2 + k
就是y等于a乘以(x-h)的平方+k
h是顶点坐标的x
k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0)
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
8.用抛物线的对称性解题
我们知道,抛物线y = ax2 + bx + c ( a ≠0 )是轴对称图形,它的对称轴是直线x = - b/ 2a ,它的顶点在对称轴上。解决有关抛物线的问题时,若能巧用抛物线的对称性,则常可以给出简捷的解法。
例1 已知抛物线的对称轴是x =1,抛物线与y轴交于点(0,3),与x轴两交点间的距离为4,求此抛物线的解析式。
分析 设抛物线的解析式为y = ax2 + bx + c 。若按常规解法,则需要解关于a、b、c的三元一次方程组,变形过程比较繁杂;若巧用抛物线的对称性,解法就简捷了。因为抛物线的对称轴为x =1,与x轴两交点间的距离为4,由抛物线的对称性可知,它与x轴交于A(-1,0)、B(3,0)两点。于是可设抛物线的解析式为y = a(x+1)(x-3)。又因为抛物线与y轴交于点(0,3),所以3 = -3a。故a =-1。
∴y = -(x+1)(x-3),即
y = - x2 + 2x +3。
例2 已知抛物线经过A(-1,2)、B(3,2)两点,其顶点的纵坐标为6,求当x =0时y的值。
分析 要求当x =0时y的值,只要求出抛物线的解析式即可。
由抛物线的对称性可知,A(-1,2)、B(3,2)两点是抛物线上的对称点。由此可知,抛物线的对称轴是x = 1。故抛物线的顶点是(1,6)。于是可设抛物线的解析式为y = a(x-1)2+ 6。因为点(-1,2)在抛物线上,所以4a + 6 = 2。故a = -1。
∴y = -(x-1)2+ 6,即
y = - x2 + 2x +5。
∴当x =0时,y = 5。
例3 已知抛物线与x轴两交点A、B间的距离为4,与y轴交于点C,其顶点为(-1,4),求△ABC的面积。
分析 要求△ABC的面积,只要求出点C的坐标即可。为此,需求出抛物线的解析式。由题设可知,抛物线的对称轴是x = -1。由抛物线的对称性可知,A、B两点的坐标分别为(-3,0)、(1,0)。故可设抛物线的解析式为y = a(x+1)2+ 4[或y = a(x+3)(x-1)]。
∵点(1,0)在抛物线上,
∴4a + 4 = 0。∴a = -1。
∴y = -(x+1)2+ 4,即
y = - x2 - 2x +3。
∴点C的坐标为(0,3)。
∴S△ABC = 1/2×(4×3)= 6。
例4 已知抛物线y = ax2 + bx + c的顶点A的纵坐标是4,与y轴交于点B,与x轴交于C、D两点,且-1和3是方程ax2 + bx + c =0的两个根,求四边形ABCD的面积。
分析 要求四边形ABCD的面积,求出A、B两点的坐标即可。为此,要求出抛物线的解析式。由题设可知,C、D两点的坐标分别为(-1,0)、(3,0)。由抛物线的对称性可知,抛物线的对称轴是x = 1。故顶点A的坐标是(1,4)。从而可设抛物线的解析式为y = a(x-1)2+ 4[或y = a(x+1)(x-3)]。
∵点(-1,0)在抛物线上,
∴4a + 4 = 0。故a = -1。
∴y = -(x-1)2+ 4,即
y = - x2 + 2x +3。
∴点B的坐标为(0,3)。
连结OA ,则S四边形ABCD = S△BOC + S△AOB + S△AOD = 1/2×1×3+1/2×3×1+1/2×3×4=9
9.关于抛物线的相关结论
过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有
① x1*x2 = p^2/4 , y1*y2 = —P^2
② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2]
③ (1/|FA|)+(1/|FB|)= 2/P
④若OA垂直OB则AB过定点M(2P,0)
⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F距离等于到准线L距离)
⑥弦长公式:AB=x1+x2+p
⑦△=b^2-4ac
⑴△=b^2-4ac>0有两个实数根
⑵△=b^2-4ac=0有两个一样的实数根
⑶△=b^2-4ac<0没实数根
⑧由抛物线焦点到其切线的垂线,是焦点到切点的距离,与到顶点距离的比例中项。
10.利用抛物线的定义解题
例:已知F是抛物线y^2=4x的焦点,A(3,2)是一个定点,P是抛物线上的动点,求|PA|+|PF|的最小值和此时P的坐标。
解:设抛物线的准线为L,过P作PH⊥L,垂足为H,再过A点作AH’⊥L,垂足为H’,并交抛物线于P’。连结P’F。则:
|PA|+|PF|=|PA|+|PH|≥|AH’|=|P’A|+|P’H|=|P’A|+|P’F|
所以,|PA|+|PF|的最小值是|AH’|,而准线方程x=-1
故|PA|+|PF|的最小值是4,此时,P’的坐标是(1,2)
与“数学,物理,几何”相关的词条
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>