首页资讯商务会员钢材特钢不锈炉料铁矿废钢煤焦铁合金有色化工水泥财经指数人才会展钢厂海外研究统计数据手机期货论坛百科搜索导航短信English
登录 注册

按字母顺序浏览 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

热门关键字: 螺纹钢 铁矿石 电炉 炼钢 合金钢 转炉 结构钢
钢铁百科 - 钢之家

三角剖分发表评论(0)编辑词条

  三角剖分是代数拓扑学里最基本的研究方法。 以曲面为例, 我们把曲面剖开成一块块碎片,要求满足下面条件:
  (1)每块碎片都是曲边三角形;
  (2)曲面上任何两个这样的曲边三角形,要么不相交,要么恰好相交于一条公共边(不能同时交两条或两条以上的边)
  拓扑学的一个已知事实告诉我们:任何曲面都存在三角剖分。
  假设曲面上有一个三角剖分, 我们把所有三角形的顶点总个数记为p(公共顶点只看成一个,下同),边数记为l,三角形的个数记为n,则e=p-l+n是曲面的拓扑不变量! 也就是说不管是什么剖分, e总是得到相同的数值。 e被称为称为欧拉示性数。
  假设g是曲面上洞眼的个数(比如球面没有洞,故g=0;又如环面有一个洞,故g=1),那么e=2-2g。
  g也是拓扑不变量,称为曲面的亏格(genus)。
  上面例举曲面的情形。对一般的拓扑对象(复形),我们有类似的剖分,通常成为单纯剖分。 分割出的每块碎片称为单纯形 (简称单形)

与“数学,公式,组合”相关的词条

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 数学 公式 组合 欧拉 拓扑

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

您希望联系哪位客服?(单击选择)