首页资讯商务会员钢材特钢不锈炉料铁矿废钢煤焦铁合金有色化工水泥财经指数人才会展钢厂海外研究统计数据手机期货论坛百科搜索导航短信English
登录 注册

按字母顺序浏览 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

热门关键字: 螺纹钢 铁矿石 电炉 炼钢 合金钢 转炉 结构钢
钢铁百科 - 钢之家

Tin发表评论(0)编辑词条

Tin

Tin is a chemical element with the symbol Sn (Latin: Stannum) and atomic number 50. It is a main group metal in group 14 of the periodic table. Tin shows chemical similarity to both neighboring group 14 elements, germanium and lead, like the two possible oxidation states +2 and +4. Tin is the 49th most abundant element and has, with 10 isotopes, the largest number of stable isotopes in the periodic table. Tin is obtained chiefly from the mineral cassiterite, where it occurs as tin dioxide, SnO2.

This silvery, malleable poor metal is not easily oxidized in air, and is used to coat other metals to prevent corrosion. The first alloy used in large scale since 3000 BC was bronze an alloy of tin and copper. After 600 BC pure metallic tin was produced. Pewter, which is alloy of 85 % and 90 % tin with the remainder commonly consisting of copper, antimony and lead, was used for flatware from the Bronze Age till the 20th century. In modern times tin is used in many alloys, most notably tin/lead soft solders, typically containing 60% or more of tin. Another large application for tin is corrosion-resistant tin plating of steel. Due to its low toxicity, tin-plated metal is also used for food packaging, giving the name to tin cans, which are made mostly out of aluminium or tin-plated steel.

Chemistry and compounds
See also Tin compounds
Tin is classified as a semimetal, as its chemical properties fall between those of metals and non-metals, just as the semiconductors silicon and germanium do. It resists corrosion from distilled, sea and soft tap water, but can be attacked by strong acids, alkalis, and acid salts. Tin can be highly polished and is used as a protective coat for other metals in order to prevent corrosion or other chemical action. Tin acts as a catalyst when oxygen is in solution and helps accelerate chemical attack.[2]

Tin forms the dioxide SnO2 (cassiterite) when it is heated in the presence of air. SnO2, in turn, is feebly acidic and forms stannate (SnO32-) salts with basic oxides. There are also stanates with the structure [Sn(OH)6]2-, like K2[Sn(OH)6], although the free stannic acid H2[Sn(OH)6] is unknown. This metal combines directly with chlorine forming tin(IV) chloride, while reacting tin with hydrochloric acid in water gives tin(II) chloride and hydrogen. Several other compounds of tin exist in the oxidation state +2 and +4, for example the tin(II) sulfide and the tin(IV) sulfide (Mosaic gold). For the hydrogen compounds this is not true, here only the oxidation state +4 is stable, the stannane (SnH4).[2]

The most important salt is stannous chloride, which has found use as a reducing agent and as a mordant in the calico printing process. Electrically conductive coatings are produced when tin salts are sprayed onto glass. These coatings have been used in panel lighting and in the production of frost-free windshields.

Tin is added to some dental care products[6][7] as stannous fluoride (SnF2). Stannous fluoride can be mixed with calcium abrasives while the more common sodium fluoride gradually becomes biologically inactive combined with calcium.[8] It has also been shown to be more effective than sodium fluoride in controlling gingivitis.[9]

Occurrence
Tin is the 49th most abundant element in the Earth's crust, representing 2 ppm compared with 75 ppm for zinc, 50 ppm for copper, and 14 ppm for lead.[12]

Tin does not occur naturally by itself, and must be extracted from a base compound, usually cassiterite (SnO2), the only commercially important source of tin, although small quantities of tin are recovered from complex sulfides such as stannite, cylindrite, franckeite, canfieldite, and teallite. Minerals with tin are almost always in association with granite rock, which when contain the mineral, have a 1% tin oxide content.[13] Due to the higher specific gravity of tin and its resistance to corrosion, about 80% of mined tin is from secondary deposits found downstream from the primary lodes. Tin is often recovered from granules washed downstream in the past and deposited in valleys or under sea. The most economical ways of mining tin are through dredging, hydraulic methods or open cast mining. Most of the world's tin is produced from placer deposits, which may contain as little as 0.015% tin. Secondary, or scrap, tin is also an important source of the metal.

It was estimated in January 2008 that there were 6.1 million tons of economically recoverable primary reserves, from a known base reserve of 11 million tons. Below are the nations with the 10 largest known reserves.

Production

Tin is produced by reducing the ore with coal in a reverberatory furnace. This metal is a relatively scarce element with an abundance in the Earth's crust of about 2 ppm, compared with 94 ppm for zinc, 63 ppm for copper, and 12 ppm for lead. Most of the world's tin is produced from placer deposits. The only mineral of commercial importance as a source of tin is cassiterite (SnO2), although small quantities of tin are recovered from complex sulfides such as stannite, cylindrite, franckeite, canfieldite, and teallite. Secondary, or scrap, tin is also an important source of the metal.

Mining and Smelting

In 2006, total worldwide tin mine production was 321,000 tons, and smelter production was 340,000 tons. From its production level of 186,300 tons in 1991, around where it had hovered for the previous decades, production of tin shot up 89%, to 351,800 tons in 2005. Most of the increase came from China and Indonesia, with the largest spike in 2004–2005, when it increased 23%. While in the 1970s Malaysia was the largest producer, with around a third of world production, it has steadily fallen, and now remains a major smelter and market center. In 2007, the People's Republic of China was the largest producer of tin, where the tin deposits are concentrated in the southeast Yunnan tin belt,[32] with 43% of the world's share, followed by Indonesia, with an almost equal share, and Peru at a distant third, reports the USGS.[16]

After the discovery of tin in what is now Bisie, North Kivu in the Democratic Republic of Congo in 2002, illegal production has increased there to around 15,000 tons[33]. This is largely fueling the ongoing and recent conflicts there, as well as affecting international markets.

Shown is a table of the countries with the largest mine production and the largest smelter output (estimates vary between USGS[17] and The British Geological Survey, the latter of which was chosen because it indicates that the most recent statistics are not estimates, and estimates match more closely with other estimates found for Congo-Kinshasa).

Industry
The ten largest companies produced most of world's tin in 2007. It is not clear which of these companies include tin smelted from the mine at Bisie, Congo-Kinshasa, which is controlled by a renegade militia and produces 15,000 tons. Most of the world's tin is traded on the London Metal Exchange (LME), from 8 countries, under 17 brands[34]. Prices of tin were at $11,900 per ton as of Nov 24, 2008. Prices reached an all time high of nearly $25,000 per ton in May 2008, largely because of the effect of the decrease of tin production from Indonesia, and have been volatile because of reliance from mining in Congo-Kinshasa.


元素资料
  元素名称:锡
  元素符号:Sn
  元素英文名称:Tin
元素性质
  锡,原子序数50,原子量118.71,元素名来源于拉丁文。在约公元前2000年,人类就已开始使用锡。锡在地壳中的含量为0.004%,几乎都以锡石(氧化锡)的形式存在,此外还有极少量的锡的硫化物矿。锡有14种同位素,其中10种是稳定同位素,分别是:锡112、114、115、116、117、118、119、120、122、124。
  金属锡柔软,易弯曲,熔点231.89°C,沸点2260°C。有三种同素异形体:白锡为四方晶系,密度7.28克/立方厘米;,硬度2,延展性好;灰锡为金刚石形立方晶系,密度5.75克/厘米³;脆锡为正交晶系,密度6.54克/厘米³。
  在空气中锡的表面生成二氧化锡保护膜而稳定,加热下氧化反应加快;锡与卤素加热下反应生成四卤化锡;也能与硫反应;锡对水稳定,能缓慢溶于稀酸,较快溶于浓酸中;锡能溶于强碱性溶液;在氯化铁、氯化锌等盐类的酸性溶液中会被腐蚀。
  锡是银白色的软金属,比重为7.3,熔点低,只有232℃,你把它放进煤球炉中,它便会熔成水银般的液体。锡很柔软,用小刀能切开它。锡的化学性质很稳定,在常温下不易被氧气氧化,所以它经常保持银闪闪的光泽。锡无毒,人们常把它镀在铜锅内壁,以防铜温水生成有毒的铜绿。牙膏壳也常用锡做(牙膏壳是两层锡中央着一层铅做成的。近年来,我国已逐渐用铝代替锡制造牙膏壳)。焊锡,也含有锡,一般含锡61%,有的是铅锡各半,也有的是由90%铅、6%锡和4%锑组成。
  锡在常温下富有展性。特别是在100℃时,它的展性非常好,可以展成极薄的锡箔。平常,人们便用锡箔包装香烟、糖果,以防受潮(近年来,我国已逐渐用铝箔代替锡箔。铝箔与锡箔很易分辨——锡箔比铝箔光亮得多)。不过,锡的延性却很差,一拉就断,不能拉成细丝。
  其实,锡也只有在常温下富有展性,如果温度下降到13.2℃以下,它竟会逐渐变成煤灰般松散的粉末。特别是在-33℃或有红盐(SnCl4·2NH4Cl)的酒精溶液存在时,这种变化的速度大大加快。一把好端端的锡壶,会“自动”变成一堆粉末。这种锡的“疾病”还会传染给其他“健康”的锡器,被称为“锡疫”。造成锡疫的原因,是由于锡的晶格发生了变化:在常温下,锡是正方晶系的晶体结构,叫做白锡。当你把一根锡条弯曲时,常可以听到一阵嚓嚓声,这便是因为正方晶系的白锡晶体间在弯曲时相互摩擦,发出了声音。在13.2℃以下,白锡转变成一种无定形的灰锡。于是,成块的锡便变成了一团粉末。
  锡不仅怕冷,而且怕热。在161℃以上,白锡又转变成具有斜方晶系的晶体结构的斜方锡。斜方锡很脆,一敲就碎,展性很差,叫做“脆锡”。白锡、灰锡、脆锡,是锡的三种同素异性体。
  由于锡怕冷,因此,在冬天要特别注意别使锡器受冻。有许多铁器常用锡焊接的,也不能受冻。1912年,国外的一支南极探险队去南极探险,所用的汽油桶都是用锡焊的,在南极的冰天雪地之中,焊锡变成粉末股的灰锡,汽油就都漏光了。
来源和用途
  锡是大名鼎鼎的“五金”——金、银、铜、铁、锡之一。早在远古时代,人们便发现并使用锡了。在我国的一些古墓中,便常发掘到一些锡壶、锡烛台之类锡器。据考证,我国周朝时,锡器的使用已十分普遍了。在埃及的古墓中,也发现有锡制的日常用品。
  我国有丰富的锡矿,特别是云南个旧市,是世界闻名的“锡都”。此外,广西、广东、江西等省也都产锡。1800年,全世界锡的年产量仅四千吨,1900年为八万五千吨,1940年为二十五万吨,现在已超过六十万吨。
  金属锡主要用于制造合金。
  锡与硫的化合物——硫化锡,它的颜色与金子相似,常用作金色颜料。
  锡与氧的化合物——二氧化锡。锡于常温下,在空气中不受氧化,强热之,则变为二氧化锡。二氧化锡是不溶于水的白色粉末,可用于制造搪瓷、白釉与乳白玻璃。1970年以来,人们把它用于防止空气污染——汽车废气中常含有有毒的一氧化碳气体,但在二氧化锡的催化下,在300℃时,可大部转化为二氧化碳。
  锡器历史悠久,可以追溯到公无前3700年,古时候,人们常在井底放上锡块,净化水质。在日本宫廷中,精心酿制的御酒都是用锡器作为盛酒的器皿。它具有储茶色不变,盛酒冬暖夏凉,淳厚清冽之传。锡茶壶泡茶特别清香,用锡杯喝酒石酸清冽爽口,锡瓶插花不易枯萎。
  锡器的材质是一种合金,其中纯锡含量在97%以上,不含铅的成份,适合日常使用。锡器平和柔滑的特性,高贵典雅的造型,历久常新光泽,历来深受贵族人士的青睐,在欧洲更成为古典文化的一种象征。
  锡是排列在白金,黄金及银后面的第四种贵金属,它富有光泽、无毒、不易氧化变色,具有很好的杀菌、净化、保鲜效用。生活中常用于食品保鲜、罐头内层的防腐膜等。
  锡是一种质地较软的金属,熔点较低,可塑性强。它可以有各种表面处理工艺,能制成多种款式的产品,有传统典雅的欧式酒具、烛台、高贵大方的茶具,以至令人一见倾心的花瓶和精致夺目的桌上饰品,式式具全媲美熠熠生辉的银器。锡器以其典雅的外观造型和独特的功能效用早已风靡世界各国,成为人们的日常用品和馈赠亲友的佳品。
  锡在我国古代常被用来制作青铜。锡和铜的比例为3:7。
元素历史
  锡,tin,是个古英文字,Sn的符号由stannum而来,这是锡的拉丁名,史前时代即已发现。因为它既不会生锈,又能抵抗外来的侵蚀,制罐头仪器就得用它。装食品的锡罐是在铁皮上面镀了一层0.0005英寸厚的锡做成的。锡罐年产量至少有300亿只。
  在自然界中,锡很少成游离状态存在,因此就很少有纯净的金属锡。最重要的锡矿是锡石,化学成分为二氧化锡。炼锡比炼铜、炼铁、炼铝都容易,只要把锡石与木炭放在一起烧,木炭便会把锡从锡石中还原出来。很显然,古代的人们如果在有锡矿的地方烧篝火烤野物时,地上的锡石便会被木炭还原,银光闪闪的、熔化了的锡液便流了出来。正因为这样,锡很早就被人们发现了。
  人类发现最早的金属是金,但没有得到广泛的应用。而最早发现并得到广泛应用的金属却是铜和锡。锡和铜的合金就是青铜,它的熔点比纯铜低,铸造性能比纯铜好,硬度也比纯铜大。所以它们被人类一发现,便很快得到了广泛的应用,并在人类文明史上写下了极为辉煌的一页,这便是“青铜器时代”。后来,由于铁的发现和使用,青铜在我们祖先的生产和生活中才逐渐退居次要地位。但这并没有使锡在人类发展史上,变得无足轻重,相反,随着现代科技的飞速发展,它在工农业生产中,以及尖端科技部门中,有了愈来愈广泛的应用,古老的金属正日益重新焕发它的青春!
  在地壳中,锡的含量是较少的,平均含量只有6%,所以锡是一种比较稀贵的金属。经过多年的研究证明,锡矿床的形成和地壳深处的岩浆活动密切相关。
  大约距今7千万年到1亿年前,地球上岩浆活动剧烈。岩浆由地下深处上升时,由于温度、压力等的改变,岩浆中一些易凝固的矿物首先结晶出来,剩下的残余岩浆的一部分侵入岩石空隙中,其中的锡的化合物发生水解生成含锡的锡石。一部分继续向上运动,特别是其中含有大量挥发性物质的岩浆,活动能力特别强,它们就象是锅炉里的高压蒸汽一样,见缝就钻,无孔不入。而锡元素却有个“怪癖”,就是最喜欢和氟氯等挥发性物质“交朋友”,它们结合生成挥发性化合物。当这些气液状态的物质沿着裂隙侵入到周围的岩石中时,在高温高压下由于物质的置换反应而使一部分锡元素结晶出来形成锡矿床;这时,剩下的最后一部分含挥发性物质的气液继续前进,一直冲到凝固着花岗岩的顶部或花岗岩体以外的地方,逐渐变为热水溶液。这时,由于环境的改变,锡的氟化物和氯化物同时发生水解,也形成了锡矿床。当然,上面所说的并不是锡矿的全部成因,有的时候,在靠近地表的地方,由于长期受地下水中的氧和二氧化碳的作用,还会使与锡共生的硫化矿物变成氧化矿物,从而变成锡石——氧化物矿床。
  上面给大家介绍的仅是原生锡矿床的一般成因。但是,锡矿床的演变并未以此停止,特别是那些靠近地表的锡矿床,经过外力的风化、侵蚀、搬运、堆积作用会进一步演变成“次生锡矿床”。
  此外,锡还会和好多种矿物结合在一起,形成锡的共生矿床。
  现在,已经发现的锡矿物在18种左右。其中最主要的一种叫做锡石,是目前炼锡的主要原料。在自然界里,纯净的锡石是很少的,常见的锡石大多数都是深棕黑色或褐色,这是因为它们含有铁、锰等元素之故。锡石的硬度较大,用小刀也刻不动;此外,锡石的化学性质很稳定,在常温常压下,几乎不溶解于任何化学溶剂。所以锡石任凭风刀霜剑和日晒雨淋的破坏。容颜仍旧不改。
  锡石还不是锡。锡石要经过矿工的辛勤劳动,从地下开采出来,并用各种方法去掉它所含的杂质,然后把锡石和焦炭、石英或石灰石放在一起燃烧,最后得到的才是金属锡。
  金属锡很柔软,用小刀就能切开它;具有银白色的光泽,它的展性很好,能展成极薄的锡箔,厚度可以薄到0.04毫米以下。不过,它的延性比较差,一拉就断,不能拉成细丝。它的熔点很低,只有232℃,因此,只要用酒精灯或蜡烛火焰就能使它熔化成象水银一样的流动性的液体。
  此外,锡既怕冷也怕热。这是怎么回事呢?原来锡在不同的温度下,有3种性质大不相同的形态。在-13.2~161℃的温度范围内,锡的性质最稳定,叫做“白锡”。如果温度升高到160℃以上,白锡就会变成一碰就碎的“脆锡”。锡对于寒冷的感觉十分敏锐,每当温度低到零下13.2℃以下时,它就会由银白色逐渐地转变成一种煤灰状的粉,这叫做“灰锡”。另外,从白锡到灰锡在转变还有一个有趣的现象,这就是灰锡有“传染性”,白锡只要一碰上灰锡,哪怕是碰上一小点,白锡马上就会向灰锡转变,直到把整块白锡毁坏掉为止。人们把这种现象叫做“锡疫”。幸好这种病是可以治疗的,把有病的锡再熔化一次,它就会复原。
  历史上就曾发生过这样一件事:1912年,有一支探险队登上冰天雪地的南极洲探险,他们带去的汽油全部奇迹般地漏光了,致使飞机坠落失事,探险队遭到了全军覆灭的灭顶之灾。原来飞机的汽油桶是用锡焊接的,一场锡疫使汽油漏得无影无踪,造成这样一场惨祸。
  那么,既怕热又怕冷的锡究竟有什么用处呢?
  金属锡可以用来制成各种各样的锡器和美术品,如锡壶、锡杯、锡餐具等,我国制作的很多锡器和锡美术品自古以来就畅销世界许多国家,深受这些国家人民的喜爱。
  金属锡还可以做成锡管和锡箔,用在食品工业上,可以保证清洁无毒。如包装糖果和香烟的锡箔,既防潮又好看。
  金属锡的一个重要用途是用来制造镀锡铁皮。一张铁皮一旦穿上锡的“外衣”之后,既能抗腐蚀,又能防毒。这是由于锡的化学性质十分稳定,不和水、各种酸类和碱类发生化学反应的缘故。目前,镀锡铁皮不仅广泛用于食品工业上,如罐头工业,而且在军工、仪表、电器以及轻工业的许多部门都有它的身影。
  在工业上,还常把锡镀到铜线或其他金属上,以防止这些金属被酸碱等腐蚀。
  锡还有许许多多的亲朋好友。锡和它们混合在一起,可以合成许多种性质各异用途广泛的合金。最常见的合金有锡和锑铜合成的锡基轴承合金和铅、锡、锑合成的铅基轴承合金,它们可以用来制造汽轮机、发电机、飞机等承受高速高压机械设备的轴承。
  青铜,这一古老的合金,它目前主要用来制造耐磨零件和耐腐蚀的设备。
  如果在黄铜中加入锡,就成了锡黄铜,它多用于制造船舶零件和船舶焊接条等。素有“海军黄铜”之称。
  至于锡和铅的合金,那是大家最熟悉不过的了,它就是通常的焊锡,在焊接金属材料时是很有用的。
  在印刷工厂里,所用的铅字,也就是锡的合金。不过由于激光印刷技术的推广,铅字将被逐渐淘汰掉。
  锡不仅能和许多金属结合成各种合金,而且还能和许多非金属结合在一起,组成各种化合物,在化学工业上,在染料工业上,在橡胶工业上,在搪瓷、玻璃、塑料、油漆、农药等工业上,它们都做出了应有的贡献。
  随着现代科技的发展,人们还用锡制造了许多特种锡合金,应用于原子能工业、电子工业、半导体器件、超导材料,以及宇宙飞船制造业等尖端技术部门,这里就不一一细说了。
  我国锡矿资源十分丰富,锡矿的探明储量为2600万吨,占世界探明储量的1/4,是世界上锡矿探明储量最多的国家。
  我国的锡矿在地区分布上极不均衡,主要集中分布在云南南部、广西东北部和西北部。其次是广东、湖南和江西等省。尤其是位于云南哀牢山区的个旧市,是世界已知最大的锡矿藏之一,锡产量居全国第一,约占全国锡产量的70%,素有“锡都”之称。
  总之,锡,这古老的金属。在现代科技飞速发展的今天,用途将越来越广泛,前景将更加广阔。

与“tin,锡”相关的词条

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: tin

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

您希望联系哪位客服?(单击选择)