首页资讯商务会员钢材特钢不锈炉料铁矿废钢煤焦铁合金有色化工水泥财经指数人才会展钢厂海外研究统计数据手机期货论坛百科搜索导航短信English
登录 注册

按字母顺序浏览 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

热门关键字: 螺纹钢 铁矿石 电炉 炼钢 合金钢 转炉 结构钢
钢铁百科 - 钢之家

Cerium发表评论(0)编辑词条

Cerium is a chemical element with the symbol Ce and atomic number 58. It is a soft, silvery, ductile metal which easily oxidizes in air. Cerium was named after the dwarf planet Ceres. Cerium is the most abundant of the rare earth elements, making up about 0.0046% of the Earth's crust by weight. It is found in a number of minerals, the most important being monazite and bastnasite. Commercial applications of cerium are numerous. They include catalysts, additives to fuel to reduce emissions and to glass and enamels to change their color. Cerium oxide is an important component of glass polishing powders and phosphors used in screens and fluorescent lamps.

Characteristics

Physical
Cerium is a silvery metal, belonging to the lanthanoid group. It resembles iron in color and luster, but is soft, and both malleable and ductile. Cerium has the longest liquid range of any non-radioactive element: 2648 C° (795 °C to 3443 °C) or 4766 F° (1463 °F to 6229 °F). (Thorium has a longer liquid range, but is radioactive)

Cerium is especially interesting because of its variable electronic structure. The energy of the inner 4f level is nearly the same as that of the outer or valence electrons, and only small energy is required to change the relative occupancy of these electronic levels. This gives rise to dual valency states. For example, a volume change of about 10% occurs when cerium is subjected to high pressures or low temperatures. It appears that the valence changes from about 3 to 4 when it is cooled or compressed. The low temperature behavior of cerium is complex. Four allotropic modifications are thought to exist: cerium at room temperature and at atmospheric pressure is known as γ cerium. Upon cooling to –16°C, γ cerium changes to ß cerium. The remaining γ cerium starts to change to α cerium when cooled to –172°C, and the transformation is complete at –269 °C. α Cerium has a density of 8.16; δ cerium exists above 726 °C. At atmospheric pressure, liquid cerium is more dense than its solid form at the melting point.

Chemical
Cerium metal tarnishes slowly in air and burns readily at 150 °C to form cerium(IV) oxide:

Ce + O2 → CeO2
Cerium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form cerium hydroxide:

2 Ce(s) + 6 H2O(g) → 2 Ce(OH)3(aq) + 3 H2(g)
Cerium metal reacts with all the halogens:

2 Ce(s) + 3 F2(g) → 2 CeF3(s) [white]
2 Ce(s) + 3 Cl2(g) → 2 CeCl3(s) [white]
2 Ce(s) + 3 Br2(g) → 2 CeBr3(s) [white]
2 Ce(s) + 3 I2(g) → 2 CeI3(s) [yellow]
Cerium dissolves readily in dilute sulfuric acid to form solutions containing the colorless Ce(III) ions, which exist as a [Ce(OH2)9]3+ complexes:

2 Ce(s) + 3 H2SO4(aq) → 2 Ce3+(aq) + 3 SO42-(aq) + 3 H2(g)
[edit] History
Cerium was discovered in Bastnäs in Sweden by Jöns Jakob Berzelius and Wilhelm Hisinger, and independently in Germany by Martin Heinrich Klaproth, both in 1803. Cerium was so named by Berzelius after the dwarf planet Ceres, discovered two years earlier (1801). As originally isolated, cerium was in the form of its oxide, and was named ceria, a term that is still used. The metal itself was too electropositive to be isolated by then-current smelting technology, a characteristic of earth metals in general. However, the development of electrochemistry by Humphry Davy was only five years into the future, and then the earths were well on their way to yielding up the metals they contained. Ceria, as isolated in 1803, contained all of the lanthanides present in the cerite ore from Bastnäs, Sweden, and thus only contained about 45% of what is now known to be pure ceria. It was not until Mosander succeeded in removing lanthana and "didymia" in the late 1830s, that ceria was obtained pure. As a historical aside: Wilhelm Hisinger was a wealthy mine owner and amateur scientist, and sponsor of Berzelius. He owned or controlled the mine at Bastnäs, and had been trying for years to find out the composition of the abundant heavy gangue rock (the "Tungstein of Bastnäs"), now known as cerite, that he had in his mine. Mosander and his family lived for many years in the same house as Berzelius, and the former was undoubtedly persuaded by the latter to investigate ceria further. When the rare earths were first discovered, since they were strong bases like the oxides of calcium or magnesium, they were thought to be divalent. Thus, "ceric" cerium was thought to be trivalent, and the oxidation state ratio was therefore thought to be 1.5. Berzelius was extremely annoyed to keep on getting the ratio 1.33. He was after all one of the finest analytical chemists in Europe. But he was a better analyst than he thought, since 1.33 was the correct answer! In the late 1950's, The Lindsay Chemical Division of American Potash and Chemical Corporation of West Chicago Illinois, then the largest producer of rare earths in the world, was offering cerium compounds in two purity ranges, "commercial" at 94-97% purity, and "purified", at a reported 99.9+% purity. In their October 1, 1958 pricelist, one-pound quantities of the oxides were priced at $3.30 or $8.10 respectively for the two purities; the per-pound price for 50-pound quantities were respectively $1.95 or $4.95 for the two grades. Cerium salts were proportionately cheaper, reflecting their lower net content of oxide.

Occurrence
See also: Category:Lanthanide minerals
AllaniteCerium is the most abundant of the rare earth elements, making up about 0.0046% of the Earth's crust by weight. It is found in a number of minerals including allanite (also known as orthite)—(Ca, Ce, La, Y)2(Al, Fe)3(SiO4)3(OH), monazite (Ce, La, Th, Nd, Y)PO4, bastnasite (Ce, La, Y)CO3F, hydroxylbastnasite (Ce, La, Nd)CO3(OH, F), rhabdophane (Ce, La, Nd)PO4-H2O, zircon (ZrSiO4), and synchysite Ca(Ce, La, Nd, Y)(CO3)2F. Monazite and bastnasite are presently the two most important sources of cerium. Large deposits of monazite, allanite, and bastnasite will supply cerium, thorium, and other rare-earth metals for many years to come.

Production
The mineral mixtures are crushed, ground and treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. The acidic filtrates are partially neutralized with sodium hydroxide to pH 3-4. Thorium precipitates out of solution as hydroxide and is removed. After that the solution is treated with ammonium oxalate to convert rare earths in to their insoluble oxalates. The oxalates are converted to oxides by annealing. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose salts is insoluble in HNO3. Metallic cerium is prepared by metallothermic reduction techniques, such as by reducing cerium fluoride or chloride with calcium, or by electrolysis of molten cerous chloride or other cerous halides. The metallothermic technique is used to produce high-purity cerium.

Applications
A major technological application for Cerium(III) oxide is a catalytic converter for the reduction of CO emissions in the exhaust gases from motor vehicles. In particular, cerium oxide is added into Diesel fuels. Another important use of the cerium oxide is a hydrocarbon catalyst in self cleaning ovens, incorporated into oven walls and as a petroleum cracking catalyst in petroleum refining.

Cerium(IV) oxide is considered one of the most efficient agents for precision polishing of optical components. Cerium compounds are also used in the manufacture of glass, both as a component and as a decolorizer. For example, cerium(IV) oxide in combination with titanium(IV) oxide gives a golden yellow color to glass; it also allows for selective absorption of ultraviolet light in glass. Cerium oxide has high refractive index and is added to enamel to make it more opaque.

Cerium(IV) oxide is used in incandescent gas mantles, such as the Welsbach mantle, where it was combined with thorium, lanthanum, magnesium or yttrium oxides. Doped with other rare earth oxides, it has been investigated as a solid electrolyte in intermediate temperature solid oxide fuel cells: The cerium(IV) oxide-cerium(III) oxide cycle or CeO2/Ce2O3 cycle is a two step thermochemical process based on cerium(IV) oxide and cerium(III) oxide for hydrogen production.

The photostability of pigments can be enhanced by addition of cerium. It provides pigments with light fastness and prevents clear polymers from darkening in sunlight. Television glass plates are subject to electron bombardment, which tends to darken them by creation of F-center color centers. This effect is suppressed by addition of cerium oxide. Cerium is also an essential component of phosphors used in TV screens and fluorescent lamps.

A traditional use of cerium was in the pyrophoric mischmetal alloy used for light flints. Because of the high affinity of cerium to sulfur and oxygen, it is used in various aluminium alloys, and iron alloys. In steels, cerium degasifies and can help reduce sulfides and oxides, and it is a precipitation hardening agent in stainless steel. Adding cerium to cast irons opposes graphitization and produces a malleable iron. Addition of 3-4% of cerium to magnesium alloys, along with 0.2 to 0.6% zirconium, helps refine the grain and give sound casting of complex shapes. It also adds heat resistance to magnesium castings.

Cerium alloys are used in permanent magnets and in tungsten electrodes for gas tungsten arc welding. Cerium is used in carbon-arc lighting, especially in the motion picture industry. Cerium oxalate is an anti-emetic drug. Cerium(IV) sulfate is used extensively as a volumetric oxidizing agent in quantitative analysis. Ceric ammonium nitrate is a useful one-electron oxidant in organic chemistry, used to oxidatively etch electronic components, and as a primary standard for quantitative analysis.

与“Cerium,铈”相关的词条

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: Cerium

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

您希望联系哪位客服?(单击选择)