共析分解发表评论(0)编辑词条
共析分解 eutectoid decomposition
合金中扩散型固态相变之一。二元合金中的高温固相,在一定的温度下,分解为在该温度稳定的两个新合金相,一个贫第二组元,另一则富第二组元。新合金相可以是两个固溶体(或纯组元),也可以是一个固溶体(或纯组元)和一个化合物或两个化合物。在相图上母相与两个新相平衡存在的温度称为共析温度,在共析温度发生共析分解的高温相或合金的化学成分称为共析成分。在多元合金中也存在一个高温相分解为几个低温相的共析分解转变。
共析分解的一个典型实例是碳钢的奥氏体分解为珠光体(见铁碳平衡图)。1863年索比(H. C.Sorby)在光学显微镜下观察到碳钢经浸蚀后的组织,他分辨出这是碳化物与铁素体的片层状组织,并认为是高温相的分解产物,称之为珠泽组织后来豪(H.M.Howe)定名为Pearlite(中文译称珠光体)。1930年贝茵(E.C.Bain)及达文波特(E.S.Davenport)发表了奥氏体在临界点以下恒温分解为珠光体的动力学曲线。随后梅尔(R.F.Mehl)等对珠光体转变机制作了系统的研究。
碳钢中的珠光体是由互相平行的铁素体片与渗碳体片相间组成(图1[碳钢中的珠光体 a×6000 b×320])。在原来的奥氏体与新相铁素体、渗碳体之间,以及在铁素体与渗碳体之间存在着一定的晶体学取向关系。相同取向的一组铁素体-渗碳体片称为珠光体领域(pearlite colony)。随着形成温度的降低,珠光体领域内铁素体片与渗碳体片的层间距减小,渗碳体片逐渐变得不平直,有时呈扇骨状。低于平衡温度形成的珠光体,其碳含量可以偏离共析成分。
珠光体转变是扩散型相变。在转变过程中,化学成分均匀的奥氏体分解为高碳的渗碳体和低碳的铁素体时,不仅需要铁原子点阵的重构,而且需要碳原子的重新分配。这种重新分配是由碳原子的长程扩散来实现的;在合金钢中还需要合金元素的重新分配和合金元素原子的扩散。所以共析分解的过程受到原子扩散的控制(见金属中的扩散)
珠光体转变过程是以形核和长大的方式进行的。按照梅尔的模型,一个珠光体领域是通过铁素体片、渗碳体片的侧向相间形核和边向长大方式形成的。新相的晶核往往首先在奥氏体晶界上产生。这个晶核可以是渗碳体,也可以是铁素体。晶核与母相奥氏体应具有一定的晶体学取向关系。形成的晶核向奥氏体晶粒内长大。梅尔认为晶核是渗碳体,渗碳体核长大使周围奥氏体中碳浓度降低,降低到一定程度后在渗碳体片侧面产生铁素体核。铁素体核长大使周围奥氏体中碳浓度增高,增高到一定程度,在铁素体片侧面又产生渗碳体核。如此便组成渗碳体-铁素体的片层状排列。与此同时,这组渗碳体片- 铁素体片边向长大,平行地向奥氏体晶粒中推移。这样就形成了一个珠光体领域。这个过程示意如图2 [珠光体领域的形成示意图]。无论最初的晶核是渗碳体,还是铁素体,转变机制没有改变。
在一个珠光体领域的长大过程中,珠光体领域与奥氏体的界面上,可以产生另一取向的渗碳体核(或铁素体核),于是开始形成另一个珠光体领域。这样,逐渐形成由多个领域组成的珠光体团(pearlite nodule),其半径对时间的导数就是长大速度。假定珠光体生核是随机的,则在珠光体团互相接触以前(即自由长大),珠光体恒温转变量分数()与体积形核率()、长大速度()及转变时间()之间的关系可以下式表达: [211-01]这个表达式当转变温度靠近共析温度,珠光体团接近球形的条件下适用,并可用图3[在一定形核率和长大速度条件下,珠光体转变量分数与时间的关系]
上的曲线来表示。实验得出:钼、镍等元素降低形核率和长大速度,因而降低珠光体的形成速度;钴则增高形核率和长大速度,促进珠光体转变。珠光体的形核率和长大速度又随转变温度的降低先增大而后又因原子扩散困难而降低。因此形成珠光体的速度达到极值后又减小。在达到给定转变量时,珠光体转变的温度、时间曲线呈C字形。
亚共析钢中奥氏体分解时,在发生珠光体转变以前,先析出铁素体;过共析钢中则先析出碳化物。相应的转变曲线见过冷奥氏体转变图。珠光体转变与钢的淬透性有密切关系。为了在淬火时得到马氏体,必须在冷却到马氏体点以前避免发生先共析铁素体析出和珠光体转变(见马氏体相变)。
共析分解也在铜、钛、锌、锆及铀等合金中发生。有的合金中,共析分解时形成的金相组织不是片状,而呈颗粒状,甚至形成非珠光体型的组织。
与“共析分解,矿产冶金”相关的词条
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>