首页资讯商务会员钢材特钢不锈炉料铁矿废钢煤焦铁合金有色化工水泥财经指数人才会展钢厂海外研究统计数据手机期货论坛百科搜索导航短信English
登录 注册

按字母顺序浏览 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

热门关键字: 螺纹钢 铁矿石 电炉 炼钢 合金钢 转炉 结构钢
钢铁百科 - 钢之家

遗传学发表评论(0)编辑词条

   遗传学研究生物起源、进化与发育的基因和基因组结构、功能与演变及其规律,经历了孟德尔经典遗传学、分子遗传学而进入了系统遗传学研究时期。

     遗传学(Genetics)——研究生物的遗传与变异的科学。   The branch of biology that deals with heredity, especially the mechanisms of hereditary transmission and the variation of inherited characteristics among similar or rela孟德尔ted organisms. (from American Heritage Dictionaries)   研究基因的结构、功能及其变异、传递和表达规律的学科。(全国科学技术名词审定委员会审定.遗传学名词.北京:科学出版社,2006年3月)   遗传学(Genetics)——研究生物的遗传与变异的科学。研究基因的结构、功能及其变异、传递和表达规律的学科。遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。
遗传学研究范围
  遗传学[1]的研究范围包括遗传物质的本质、遗传物质的传递和遗传信染色体息的实现三个方面。遗传物质的本质包括它的化学本质、它所包含的遗传信息、它的结构、组织和变化等;遗传物质的传递包括遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等;遗传信息的实现包括基因的原初功能、基因的相互作用,基因作用的调控以及个体发育中的基因的作用机制等。
遗传学学科分支
  遗传学遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。基因相互作用与信号传导网络的系统生物学研究是系统遗传学的内容。   一个受精卵通过有丝分裂而产生无数具有相同遗传组成的子细胞,它们怎样分化成为不同的组织是一个遗传学课题,有关这方面的研究属于发生遗传学。由一个受精卵产生的免疫活性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。   从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则异变人上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。   微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。   更多的遗传学分支学科是按照所研究的问题来划分的。例如,细胞遗传学是细胞学和遗传学的结合;发生遗传学所研究的是个体发育的遗传控制;行为遗传学研究的是行为的遗传基础;免疫遗传学研究的是免疫机制的遗传基础;辐射遗传学专门研究辐射的遗传学效应;药物遗传学则专门研究人对药物反应的遗传规律和物质基础,等等。   从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。这些学科之间关系紧密,界线较难划分。群体遗传学常用数学方法研究群体中的基因的动态,研究基因突变、自然选择、群体大小、交配体制、迁移和漂变等因素对群体中的基因频率和基因平衡的影响;生态遗传学研究的是生物与生物,以及生物与环境相互适应或影响的遗传学基础,常把野外工作和实验室工作结合起来研究多态现象、拟态等,借以验证群体遗传学研究中得来的结论;进化遗传学的研究内容包括生命起源、遗传物质、遗传密码和遗传机构的演变以及物种形成的遗传基础等。物种形成的研究也和群体遗传学、生态遗传学有密切的关系。   从应用角度看,医学遗传学是人类遗传学的分支学科,它研究遗传性疾病的遗传规律和本质;临床遗传学则研究遗传病的诊断和预防;优生学则是遗传学原理在改良人类遗传素质中的应用。生统遗传学或数量遗传学的主要研究对象是数量性状,而农作物和家畜的经济性状多半是数量性状,因此它们是动植物育种的理论基础。
遗传学研究方法
  杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形遗传学的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥,便是由于生活周期短和体形小而常被用作遗传学研究的材料。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料。   生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。   系统科学理论(systems theory)、组学生物技术、计算生物学与合成生物学是系统遗传学的研究方法。
遗传学的发展简史
  孟德尔人类在新石器时代就已经驯养动物和栽培植物,而后人们逐渐学会了改良动植物品种的方法。西班牙学者科卢梅拉在公元60年左右所写的《论农作物》一书中描述了嫁接技术,还记载了几个小麦品种。533~544年间中国学者贾思勰在所著《齐民要术》一书中论述了各种农作物、蔬菜、果树、竹木的栽培和家畜的饲养,还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。改良品种的活动从那时以后从未中断。   许多人在这些活动的基础上力图阐明亲代和杂交子代的性状之间的遗传规律都未获成功。直到1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,才奠定了遗传学的基础。   孟德尔的工作结果直到20世纪初才受到重视。19世纪末叶在生物学中,关于细胞分裂、染色体行为和受精过程等方面的研究和对于遗传物质的认识,这两个方面的成遗传学就促进了遗传学的发展。   从1875~1884的几年中德国解剖学家和细胞学家弗莱明在动物中,德国植物学家和细胞学家施特拉斯布格在植物中分别发现了有丝分裂、减数分裂、染色体的纵向分裂以及分裂后的趋向两极的行为;比利时动物学家贝内登还观察到马副蛔虫的每一个身体细胞中含有等数的染色体;德国动物学家赫特维希在动物中,施特拉斯布格在植物中分别发现受精现象;这些发现都为遗传的染色体学说奠定了基础。美国动物学家和细胞学家威尔逊在 1896年发表的《发育和遗传中的细胞》一书总结了这一时期的发现。   关于遗传的物质基础历来有所臆测。例如1864年英国哲学家斯宾塞称之为活粒;1868年英国生物学家达尔文称之为微芽; 1884年瑞士植物学家内格利称之为异胞质;1889年荷兰学者德弗里斯称之为泛生子;1883年德国动物学家魏斯曼称之为种质.实际上魏斯曼所说的种质已经不再是单纯的臆测了,他已经指明生殖细胞的染色体便是种质,并且明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路   孟德尔的工作于1900年为德弗里斯、德国植物遗传学家科伦斯和奥地利孟德尔三大定律植物遗传学家切尔马克三位从事植物杂交试验工作的学者所分别发现。1900~1910年除证实了植物中的豌豆、玉米等和动物中的鸡,小鼠、豚鼠等的某些性状的遗传符合孟德尔定律以外,还确立了遗传学的一些基本概念。1909年丹麦植物生理学家和遗传学家约翰森称孟德尔式遗传中的遗传因子为基因,并且明确区别基因型和表型。同年贝特森还创造了等位基因、杂合体、纯合体等术语,并发表了代表性著作《孟德尔的遗传原理》。   从1910年到现在遗传学的发展大致可以分为三个时期:细胞遗传学时期、微生物遗传学时期和分子遗传学时期。
细胞遗传学时期
  大致是1910~1940年,可从美国遗传学家和发育生物学家摩尔根在1910年发表关于果蝇的性连锁遗传开始,到1941年美国遗传学家比德尔和美国生物化学家塔特姆发表关于链孢霉遗传学的营养缺陷型方面的研究结果为止。   这一时期通过对遗传学规律和染色体行为的研究确立了遗传的染色体学说。摩尔根在1926年发表的《基因论》和英国细胞遗传学家达林顿在1932年发表的《细胞学的最新成就》两书是这一时期的代表性著作。这一时期中虽然在1927年由美国遗传学家米勒和1928年斯塔德勒分别在动植物中发现了 X射线的诱变作用,可是对于基因突变机制的研究并没有进展。基因作用机制研究的重要成果则几乎只限于动植物色素的遗传研究方面。
微生物遗传学时期
  大致是1940~1960年,从1941年比德尔和塔特姆发表关于脉孢霉属中的研遗传学究结果开始,到1960~1961年法国分子遗传学家雅各布和莫诺发表关于大肠杆菌的操纵子学说为止。   在这一时期中,采用微生物作为材料研究基因的原初作用、精细结构、化学本质、突变机制以及细菌的基因重组、基因调控等,取得了已往在高等动植物研究中难以取得的成果,从而丰富了遗传学的基础理论。1900~1910年人们只认识到孟德尔定律广泛适用于高等动植物,微生物遗传学时期的工作成就则使人们认识到遗传学的基本规律适用于包括人和噬菌体在内的一切生物。
分子遗传学时期
  从1953年美国分子生物学家沃森和英国分子生物学家克里克提出DNA遗传学的双螺旋模型开始,但是50年代只在DNA分子结构和复制方面取得了一些成就,而遗传密码、mRNA、tRNA、核糖体的功能等则几乎都是60年代才得以初步阐明。   分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物、特别是以大肠杆菌和它的噬菌体作为研究材料完成的;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物方面开展起来。   正像细胞遗传学研究推动了群体遗传学和进化遗传学的发展一样,分子遗传学也推动了其他遗传学分支学科的发展。遗传工程是在细菌质粒和噬苗体以及限制性内切酶研究的基础上发展起来的,它不但可以应用于工、农、医各个方面,而且还进一步推进分子遗传学和其他遗传学分支学科的研究。   免疫学在医学上极为重要,已有相当长的历史。按照一个基因一种酶假设,一个生物为什么能产生无数种类的免疫球蛋白,这本身就是一个分子遗传学问题。自从澳大利亚免疫学家伯内特在 1959年提出了克隆选择学说以后,免疫机制便吸引了许多遗传学家的注意。目前免疫遗传学既是遗传学中比较活跃的领域之一,也是分子遗传学的活跃领域之一。   在分子遗传学时代另外两个迅速发展的遗传学分支是人类遗传学和体细胞遗传学。自从采用了微生物遗传学研究的手段后,遗传学研究可以不通过生殖细胞而通过离体培养的体细胞进行,人类遗传学的研究才得以迅速发展。不论研究的对象是什么,凡是采用组织培养之类方法进行的遗传学研究都属于体细胞遗传学。人类遗传学的研究一方面广泛采用体细胞遗传学方法,另一方面也愈来愈多地应用分子遗传学方法,例如采用遗传工程的方法来建立人的基因文库并从中分离特定基因进行研究等。
遗传学的基本内容
  遗传学的研究范围包括遗传物质的本质、遗传物质的传递和遗传信息的实现三个方面。遗传物质的本质包括它的化学本质、它所包含的遗传信息、它的结构、组织和变化等;遗传物质遗传学的传递包括遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等;遗传信息的实现包括基因的原初功能、基因的相互作用,基因作用的调控以及个体发育中的基因的作用机制等。   遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。   一个受精卵通过有丝分裂而产生无数具有相同遗传组成的子细胞,它们怎样分化成为不同的组织是一个遗传学课题,有关这方面的研究属于发生遗传学。由一个受精卵产生的免疫恬性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。   从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。   微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。   更多的遗传学分支学科是按照所研究的问题来划分的。例如,细胞遗传学是细胞学和遗传学的结合;发生遗传学所研究的是个体发育的遗传控制;行为遗传学研究的是行为的遗传基础;免疫遗传学研究的是免疫机制的遗传基础;辐射遗传学专门研究辐射的遗传学效应;药物遗传学则专门研究人对药物反应的遗传规律和物质基础,等等。   从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。这些学科之间关系紧密,界线较难划分。群体遗传学常用数学方法研究群体中的基因的动态,研究基因突变、自然选择、群体大小、交配体制、迁移和漂变等因素对群体中的基因频率和基因平衡的影响;生态遗传学研究的是生物与生物,以及生物与环境相互适应或影响的遗传学基础,常把野外工作和实验室工作结合起来研究多态现象、拟态等,借以验证群体遗传学研究中得来的结论;进化遗传学的研究内容包括生命起源、遗传物质、遗传密码和遗传机构的演变以及物种形成的遗传基础等。物种形成的研究也和群体遗传学、生态遗传学有密切的关系。   从应用角度看,医学遗传学是人类遗传学的分支学科,它研究遗传性疾病的遗传规律和本质;临床遗传学则研究遗传病的诊断和预防;优生学则是遗传学原理在改良人类遗传素质中的应用。生统遗传学或数量遗传学的主要研究对象是数量性状,而农作物和家畜的经济性状多半是数量性状,因此它们是动植物育种的理论基础。   杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥,便是由于生活周期短和体形小而常被用作遗传学研究的材料。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料。   生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。
遗传学与其它学科的关系及其应用
  遗传学与生物化学的关系最为密切,和其他许多生物学分支学科之间也有密切关系。例如发生遗传学和发育生物学之间的关系;行为遗传学同行为生物学之间的关系;生态遗传学同生态学之间的关系等。此外,遗传学和分类学之间也有着密切的关系,这不仅因为在分类学中应用了DNA碱基成分和染色体等作为指标,而且还因为物种的实质也必须从遗传学的角度去认识。   各个生物学分支学科所研究的是生物的各个层次上的结构和功能,这些结构和功能无一不是遗传和环境相互作用的结果,所以许多学科在概念和方法上都难于离开遗传学遗传学。例如激素的作用机制和免疫反应机制一向被看作是和遗传学没有直接关系的生理学问题,可是现在知道前者和基因的激活有关,后者和身体中不同免疫活性细胞克隆的选择有关。   遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。   美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显著的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到了应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。这些主要是细胞遗传学时期研究成果的应用。   40年代初,抗菌素工业的兴起推动了微生物遗传学的发展,微生物遗传学的发展又推动了抗菌素工业以及其他新兴的发酵工业的进步。随着微生物遗传学研究的深入,基因调控作用的原理被成功地应用到氨基酸等发酵工业中。此外杂交转导、转化等技术的采用也增加了育种的手段。   70年代体细胞遗传学的发展进一步增加了育种的手段,包括所谓单倍体育种以及通过体细胞诱变和细胞融合的育种等。这些手段的应用将有可能大大地加速育种工作的进程。   遗传学研究同人类本身密切相关。由于人类遗传学研究的开展,特别是应用体细胞遗传学和生化遗传学方法所取得的进展,对于遗传性疾病的种类和原因已经有很多了解;产前诊断和婴儿的遗传性疾病诊断已经逐渐推广;对于某些遗传性疾病的药物治疗也在研究中。免疫遗传学是组织移植和输血等医学实践的理论基础;药物遗传学和药物学有密切的关系;毒理遗传学关系到药物的安全使用和环境保护。用遗传工程技术对遗传性疾病进行基因治疗也正在进行探索。人类遗传学研究也是优生学的基础。   遗传学研究为致癌物质的检测提供了一系列的方法。虽然目前治疗癌症还没有十分有效的方法,但在环境污染日益严重的今天能够有效地检测环境中的致癌物质,便是一个重大的进展。癌症患病的倾向性是遗传的,癌症的起因又同DNA损伤修复有关,近年来癌基因的发现进一步说明癌症和遗传的密切关系,所以从长远观点来看,遗传学研究必将为全面控制癌症作出贡献。   许多遗传学分支的研究都采用了分子遗传学手段,特别是重组DHA技术。即使是有关群体的遗传学研究也受分子遗传学的影响,进化遗传学研究中的分子进化领域便是一个例子。   近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。
21世纪的新趋势
  1991-1997年,中国曾邦哲[杰](Zeng BJ.)发表《结构论-泛进化理论》系列论文,阐述系统医药学(systems medicine)、系统生物工程(system biological engineering)与系统遗传学(system genetics)的概念,提出经典、分子与系统遗传学发展观,以及于2003年、2008年于国际遗传学大会,采用结构(structure)、系统(system)、图式(pattern)遗传学的词汇来描述系统科学方法、计算机技术研究生物系统遗传结构、生物系统形态图式之间的“基因型-表达型”复杂系统研究领域,以细胞信号传导、基因调控网路为核心研究细胞进化、细胞发育、细胞病理、细胞药理的细胞非线性系统动力学。   2003年挪威科学家称之为整合遗传学(integrative genetics)并建立了研究中心,2005年,国际上Cambien F.和 Laurence T.发表动脉硬化研究的系统遗传学观,Morahan G., Williams RW.等2007年(Bock G., Goode J. Eds.)论述系统遗传学将成为下一代遗传学。2005-2008年,国际系统遗传学飞速发展,欧美建立了许多系统遗传学研究中心和实验室。2008年在美国召开了整合与系统遗传学国际会议,2009年荷兰举办了系统遗传学国际会议,2008年美国国立卫生研究院(NIH)设立了肿瘤的系统遗传学研究专项基金。系统遗传学,采用计算机建模、系统数学方程、纳米高通量生物技术、微流控芯片实验等方法,研究基因组的结构逻辑、基因组精细结构进化、基因组稳定性、生物形态图式发生的细胞发生非线性系统动力学。
研究与技术
  模式生物与遗传学   黑腹果蝇(Drosophila melanogaster)是一种流行于遗传学研究中的模式生物。   一开始遗传学家们的研究对象很广泛,但逐渐地集中到一些特定物种(模式生物)的遗传学上。这是由于新的研究者更趋向于选择一些已经获得广泛研究的生物体作为研究目标,使得模式生物成为多数遗传学研究的基础。模式生物的遗传学研究包括基因调控以及发育和癌症相关基因的研究。   模式生物具有传代时间短、易于基因操纵等优点,使得它们成为流行的遗传学研究工具。目前广泛使用的模式生物包括:大肠杆菌(Escherichia coli)、酿酒酵母(Saccharomyces cerevisiae)、拟南芥(Arabidopsis thaliana)、线虫(Caenorhabditis elegans)、果蝇(Drosophila melanogaster)以及小鼠(Mus musculus)。
医学相关的遗传学研究
  医学遗传学的目的是了解基因变异与人类健康和疾病的关系。当寻找一个可能与某种疾病相关的未知基因时,研究者通常会用遗传连锁和遗传系谱来定位基因组上与该疾病相关的区域。在群体水平上,研究者会采用孟德尔随机法来寻找基因组上与该疾病相关的区域,这一方法也特别适用于不能被单个基因所定义的多基因性状。一旦候选基因被发现,就需要对模式生物中的对应基因(直系同源基因)进行更多的研究。对于遗传疾病的研究,越来越多发展起来的研究基因型的技术也被引入到药物遗传学中,来研究基因型如何影响药物反应。   癌症虽然不是传统意义上的遗传病,但被认为是一种遗传性疾病。癌症在机体内的产生过程是一个综合性事件。机体内的细胞在分裂过程中有一定几率会发生突变。这些突变虽然不会遗传给下一代,但会影响细胞的行为,在一些情况下会导致细胞更频繁地分裂。有许多生物学机制能够阻止这种情况的发生:信号被传递给这些不正常分裂的细胞并引发其死亡;但有时更多的突变使得细胞忽略这些信号。这时机体内的自然选择和逐渐积累起来的突变使得这些细胞开始无限制生长,从而成为癌症性肿瘤(恶性肿瘤),并侵染机体的各个器官。
相关研究技术
  琼脂平板上的大肠杆菌菌落,细胞克隆的一个例子,常用于分子克隆。   可以在实验室中对DNA进行操纵。限制性内切酶是一种常用的剪切特异性序列的酶,用于制造预定的DNA片断。然后利用DNA连接酶将这些片断重新连接,通过将不同来源地DNA片断连接到一起,就可以获得重组DNA。重组DNA技术通常被用于在质粒(一种短的环形DNA片断,含有少量基因)中,这常常与转基因生物的制造有关。将质粒转入细菌中,再在琼脂平板培养基上生长这些细菌(来分离菌落克隆),然后研究者们就可以用克隆菌落来扩增插入的质粒DNA片断(这一过程被称为分子克隆)。   DNA还能够通过一个被称为聚合酶链锁反应(又被称为PCR)的技术来进行扩增。利用特定的短的DNA序列,PCR技术可以分离和扩增DNA上的靶区域。因为只需要极少量的DNA就可以进行扩增,该技术也常常被用于DNA检测(检测特定DNA序列的存在与否)。
DNA测序与基因组
  DNA测序技术是遗传学研究中发展起来的一个最基本的技术,它使得研究者可以确定DNA片段的核苷酸序列。由弗雷德里克·桑格和他的同事于1977年发展出来的链终止测序法现在已经是DNA测序的常规手段。在这一技术的帮助下,研究者们能够对与人类疾病相关的DNA序列进行研究。   由于测序已经变得相对廉价,而且在计算机技术的辅助下,可以将大量不同片断的序列信息连接起来(这一过程被称为“基因组组装”),因此许多生物(包括人类)的基因组测序已经完成。这些技术也被用在测定人类基因组序列,使得人类基因组计划得以在2003年完成。随着新的高通量测序技术的发展,DNA测序的费用被大大降低,许多研究者希望能够将测定一个人的基因组信息的价格降到一千美元以内,从而使大众测序成为可能。   大量测定的基因组序列信息催生了一个新的研究领域——基因组学,研究者利用计算机软件查找和研究生物的全基因组中存在的规律。基因组学也能够被归类为生物信息学(利用计算的方法来分析生物学数据)下的一个领域。
遗传学的实践意义
  遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显著的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。

与“遗传学”相关的词条

DNA   费希尔  

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 遗传学

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>

您希望联系哪位客服?(单击选择)