奥氏体晶粒发表评论(0)编辑词条
奥氏体晶粒(austenite grain)
钢在奥氏体化时所得到的晶粒。此时的晶粒尺寸称为奥氏体晶粒度。
分类编辑本段回目录
奥氏体晶粒有起始晶粒、实际晶粒和本质晶粒3种不同的概念。(1)起始晶粒。指加热时奥氏体转变过程刚刚结束时的晶粒,此时的晶粒尺寸称为奥氏体起始晶粒度。(2)实际晶粒。指在热处理时某一具体加热条件下最终所得的奥氏体晶粒,其尺寸大小即为奥氏体实际晶粒度。(3)本质晶粒。指各种钢加热时奥氏体晶粒长大的倾向,晶粒容易长大的称本质粗晶粒,晶粒不易长大的称本质细晶粒。通常在实际金属热处理条件下所得到的奥氏体晶粒大小,即为该条件下的实际晶粒度,而一系列实际晶粒度的测得即表示出该钢材的本质晶粒度。据中国原冶金工业部标准YB27-77规定,测定奥氏体本质晶粒度是将钢加热到930℃,保温3~8h后进行。因此温度略高于一般热处理加热温度,而相当于钢的渗碳温度,经此正常处理后,奥氏体晶粒不过分长大者,即称此钢为本质细晶粒钢。
显示方法编辑本段回目录
绝大部分钢的奥氏体只是在高温下才是稳定的。因此欲测定奥氏体晶粒就得设法将高温状态奥氏体轮廓的痕迹在室温下显示出来,常用的显示奥氏体晶粒的方法可归纳为渗入外来元素法、化学试剂腐蚀法和控制冷却速度法3种。(1)渗入外来元素法。如渗碳法和氧化法,是利用奥氏体晶界优先形成渗碳体和氧化亚铁等组成物,形成网络显示出奥氏体轮廓。渗碳法一般适用于不高于0.3%C的渗碳钢和含不高于0.6%C而含碳化物元素较多的其他类型钢。氧化法却适用于任何结构钢和工具钢。(2)化学试剂腐蚀法。钢材经不同温度的淬火一回火处理后,磨光并用饱和苦味酸水溶液和新洁尔灭几滴浸蚀能抑制马氏体组织,促使奥氏体晶界的显示。或者直接用盐酸1~5mL、苦味酸(饱和的)和乙醇浸蚀,使马氏体直接显示出来,利用马氏体深浅不同和颜色的差异而显示出奥氏体的晶粒大小,此法适用于合金化程度高的能直接淬硬的钢。(3)控制冷却速度法。低碳钢、亚共析钢、共析钢、过共析钢可控制冷却速度使钢的奥氏体周围先共析析出网状铁素体、网状渗碳体,或使屈氏体沿晶界少量析出以显示出奥氏体晶粒。
测定方法 编辑本段回目录
测定奥氏体晶粒度常用比较法和统计法。比较法测定奥氏体晶粒度是根据YB27-77级别图与之相比较。标准晶粒度分8级,1~4级属粗晶粒,5~8级属细晶粒,8级以上的10~13级为超细晶粒。此法均在100倍显微镜下观察。晶粒度级别N与晶粒大小之间符合n=2N-1或n’=2N-3的关系,式中n为在放大100倍下观察时,每6.45mm2视野中的平均晶粒数;n’为实际每1mm2面积中平均晶粒数。若出现过粗或过细晶粒,需在50倍或大于100倍的显微镜下观察进行换算。表1为换算为100倍的晶粒度表。统计法实际为测定晶粒的平均直径法。表2为晶粒度与其他晶粒大小表示法的比较。
表1 换算为100倍的晶粒度表
其他放大倍数 | 放大100倍晶粒度级别 | ||||||||||||||||
-3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
50 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||||
200 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||
300 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||
400 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||||||
500 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
表2 晶粒度与其他晶粒大小表示法的比较
晶粒号数 | 放大100倍时,每6.45mm2面积所含的晶粒数目 | 实际每mm2面积中 平均含有的晶粒数 | 平均每一晶粒 所占面积 /mm2 | 计算的晶粒 平均直径/mm | ||
最多 | 最少 | 平均 | ||||
-3① | 0.09 | 0.06 | 0.06 | 1 | 1 | 1.00 |
-2① | 0.19 | 0.09 | 0.12 | 4 | 0.5 | -0.707 |
-1① | 0.37 | 0.17 | 0.25 | 8 | 0.25 | 0.500 |
0 | 0.75 | 0.37 | 0.5 | 16 | 0.125 | 0.353 |
1 | 1.5 | 0.75 | 1 | 32 | 0.0625 | 0.250 |
2 | 3 | 1.5 | 2 | 64 | 0.0312 | 0.177 |
3 | 6 | 3 | 4 | 128 | 0.0156 | 0.125 |
4 | 12 | 6 | 8 | 256 | 0.0078 | 0.088 |
5 | 22 | 12 | 16 | 512 | 0.0039 | 0.062 |
6 | 48 | 24 | 32 | 1024 | 0.00l95 | 0.044 |
7 | 96 | 48 | 64 | 2048 | 0.00098 | 0.031 |
8 | 192 | 96 | 128 | 4096 | 0.00049 | 0.022 |
9 | 384 | 192 | 256 | 8192 | 0.000244 | 0.0156 |
10 | 768 | 384 | 512 | 16384 | 0.000122 | 0.0110 |
11 | 1536 | 768 | 1024 | 32768 | 0.000061 | 0.0078 |
12 | 3072 | 1 536 | 2048 | 2 | 0.000030 | 0.0055 |
①为了避免在晶粒号前出现“—”号,有人把-3、-2、-1等晶粒号改为0000、000、00号。
影响因素 首先,奥氏体起始晶粒度取决于形核率N和长大速度G的比值N/G,此值愈大,奥氏体起始晶粒就愈小。其次,在起始晶粒形成之后,钢的实际晶粒则取决于奥氏体在继续保温或升温过程中的长大倾向,而奥氏体晶粒长大倾向又与起始晶粒的大小、均匀性以及晶界能有关。晶粒大小愈不均匀、曲率半径愈小、表面弯曲度愈大,则界面能愈大,晶粒长大的倾向性就愈大。
此外,奥氏体的实际晶粒度还受加热温度、保温时间、钢的成分以及第二相颗粒的大小、多少、性质、原始组织和加热速度等的影响。(1)加热速度和保温时间的影响。晶粒长大和原子的扩散密切相关,温度愈高,相应的保温时间愈长,原子的活动能力愈大,扩散愈容易进行,奥氏体晶粒亦将愈粗大。(2)加热速度的影响。加热速度实质上是过热度问题,过热度愈大,即成核率与成长速度之比越大,将获得细小的起始晶粒。虽然如此,但高温下奥氏体晶粒极易长大,因此,在高温下不能有长的保温时间。(3)钢中含碳量的影响。在钢中含碳量不足以形成未溶解的碳化物时,含碳量增高,奥氏体的晶粒容易长大而粗化。当形成未溶解的二次渗碳体时,因奥氏体晶粒长大受第二相的阻碍作用,使奥氏体晶粒长大的倾向反而减小。(4)脱氧剂及合金化元素的影响。用铝脱氧的钢,晶粒长大的倾向小,属本质细晶粒钢。这是因为钢中含有大量难溶的六方点阵结构的A1N、机械地阻碍奥氏体长大。用硅和锰脱氧的钢,晶粒长大的倾向大,一般属于本质粗晶粒钢。其他合金元素按阻碍奥氏体晶粒长大程度的不同,可以分为:有强烈阻碍晶粒长大作用的,如铌、锆、钛、钽、钒和铝等;有中等阻碍作用的,如钨、钼和铬等;稍有阻碍或无阻碍作用的,如铜、镍、钴和硅等;有增大晶粒长大倾向的,如碳(指溶入奥氏体中的)、磷、锰等。(5)原始组织的影响。钢的原始组织愈细、碳化物分散度愈大,所得到的奥氏体起始晶粒愈细小。但从晶粒长大的原理可知,起始晶粒愈细小,则钢的晶粒长大倾向性愈大,即钢的过热敏感性增大,生产上难于控制。所以原始组织极细的钢,不可用过高的加热温度和长的保温时间,而宜采用快速加热、短时保温的热处理工艺。
晶粒度的作用加热时所得到的奥氏体实际晶粒的大小,对冷却后钢的组织和性能有很大的影响。一般地说,粗大的奥氏体实际晶粒往往导致冷却后获得粗大的组织,而粗大的组织又往往相应地具有较低的塑性和韧性。就冲击韧性而言,普通碳钢和低合金钢的奥氏体晶粒度每细化一级,冲击韧性值能提高19.6~39.2J/cm2,同时冷脆转化温度可降低10℃以上。因此,在热处理时应严格控制奥氏体晶粒大小,以获得良好的综合性能。
细化晶粒已成为强化金属材料的重要手段之一。通过多次反复奥氏体化处理,或用交变冷变形及在(α+γ)两相区退火等方法,获得超细化奥氏体晶粒,可以同时提高钢的强度和韧性。特别是低温下使用的高强度合金,经此类处理后可使其断裂韧性大幅度提高,例如将40crNiMo钢的奥氏体晶粒度由5~6级细化到12~13级时,其KIc值可由1.382kPa•m1/2。(138.2×10-2N/cm3/2)提高到2.607kPa•m1/2(260.7×10-2N/cm3/2)。
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
3
标签: 奥氏体晶粒 austenite grain
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>